دانلود مقاله ISI انگلیسی شماره 137561
ترجمه فارسی عنوان مقاله

بررسی و کاربرد یک مدل شبکه عصبی موجک ترکیبی با الگوریتم جستجو بهبود یافته ی کوکو برای پیش بینی سیستم برق

عنوان انگلیسی
Research and application of a hybrid wavelet neural network model with the improved cuckoo search algorithm for electrical power system forecasting
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
137561 2017 20 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Energy, Volume 198, 15 July 2017, Pages 203-222

پیش نمایش مقاله
پیش نمایش مقاله  بررسی و کاربرد یک مدل شبکه عصبی موجک ترکیبی با الگوریتم جستجو بهبود یافته ی کوکو برای پیش بینی سیستم برق

چکیده انگلیسی

Electricity forecasting plays an important role in the operation of electrical power systems. Many models have been developed to obtain accurate forecasting results, but most of them focus more on a single forecasting indicator, such as short-term load forecasting (STLF), short-term wind speed forecasting (STWSF) or short-term electricity price forecasting (STEPF). In this paper a new hybrid model based on the singular spectrum analysis (SSA) and modified wavelet neural network (WNN) is proposed for all the short-term load forecasting, short-term wind speed forecasting and short-term electricity price forecasting. In this model, a new improved cuckoo search (CS) algorithm is proposed to optimize the initial weights and the parameters of dilation and translation in WNN. Case studies of half-hourly electrical load data, 10-min-ahead wind speed data and half-hourly electricity price data are applied as illustrative examples to evaluate the proposed hybrid model, respectively. Experiments show that the hybrid model resulted in 46.4235%, 31.6268% and 25.8776% reduction in the mean absolute percentage error compared to the comparison models in short-term load forecasting, short-term wind speed forecasting and short-term electricity price forecasting, respectively.