دانلود مقاله ISI انگلیسی شماره 138775
ترجمه فارسی عنوان مقاله

سیستم متخصص رمان برای شناسایی گلوکوم با استفاده از طیف انرژی ناپیوستگی فضایی با تصاویر فوندوس

عنوان انگلیسی
Novel expert system for glaucoma identification using non-parametric spatial envelope energy spectrum with fundus images
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
138775 2018 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Biocybernetics and Biomedical Engineering, Volume 38, Issue 1, 2018, Pages 170-180

پیش نمایش مقاله
پیش نمایش مقاله  سیستم متخصص رمان برای شناسایی گلوکوم با استفاده از طیف انرژی ناپیوستگی فضایی با تصاویر فوندوس

چکیده انگلیسی

Glaucoma is the prime cause of blindness and early detection of it may prevent patients from vision loss. An expert system plays a vital role in glaucoma screening, which assist the ophthalmologists to make accurate decision. This paper proposes a novel technique for glaucoma detection using optic disk localization and non-parametric GIST descriptor. The method proposes a novel area based optic disk segmentation followed by the Radon transformation (RT). The change in the illumination levels of Radon transformed image are compensated using modified census transformation (MCT). The MCT images are then subjected to GIST descriptor to extract the spatial envelope energy spectrum. The obtained dimension of the GIST descriptor is reduced using locality sensitive discriminant analysis (LSDA) followed by various feature selection and ranking schemes. The ranked features are used to build an efficient classifier to detect glaucoma. Our system yielded a maximum accuracy (97.00%), sensitivity (97.80%) and specificity (95.80%) using support vector machine (SVM) classifier with nineteen features. Developed expert system also achieved maximum accuracy (93.62%), sensitivity (87.50%) and specificity (98.43%) for public dataset using twenty six features. The proposed method is efficient and computationally less expensive as it require only nineteen features to model a classifier for the huge dataset. Therefore the proposed method can be effectively utilized in hospitals for glaucoma screening.