دانلود مقاله ISI انگلیسی شماره 138799
ترجمه فارسی عنوان مقاله

ایجاد یک سیستم کارآمد هوشمند برای پیش بینی جریان جریان، یکپارچه در یک سیستم حمایت از تصمیم برای مدیریت مخازن چندگانه: مطالعه موردی

عنوان انگلیسی
Developing an intelligent expert system for streamflow prediction, integrated in a dynamic decision support system for managing multiple reservoirs: A case study
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
138799 2017 88 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 83, 15 October 2017, Pages 145-163

پیش نمایش مقاله
پیش نمایش مقاله  ایجاد یک سیستم کارآمد هوشمند برای پیش بینی جریان جریان، یکپارچه در یک سیستم حمایت از تصمیم برای مدیریت مخازن چندگانه: مطالعه موردی

چکیده انگلیسی

Since fresh water is limited while agricultural and human water demands are continuously increasing, optimal prediction and management of streamflows as a source of fresh water is crucially important. This study investigates and demonstrates how data preprocessing and data mining techniques would improve the accuracy of streamflow predictive models. Based on easily accessible Snow Telemetry data (SNOTEL), four streamflow prediction models – autoregressive integrated moving average (ARIMA), artificial neural networks (ANNs), a hybrid-model of ANN and ARIMA (ANN-ARIMA), and an adaptive neuro fuzzy inference system (ANFIS) – were developed and utilized in a streamflow prediction process on Elephant Butte Reservoir. Utilizing the statistical correlation analysis and the extracting importance degrees of predictors led to efficiently select the most effective predictors for daily and monthly streamflow to Elephant Butte Reservoir. For the daily prediction time step, by preprocessing the historical data and extracting and utilizing the extracted climate variability indices through data mining techniques, the ANFIS model achieved a superior streamflow prediction performance for Elephant Butte Reservoir compared to the other three evaluated prediction models. Additionally, for predicting monthly streamflow to the Elephant Butte Reservoir, ANFIS showed significantly higher accuracy than the ANNs. As an optimal application of the developed predictive expert systems, successful integrating the prediction models in integrated reservoir operations balanced the need for a reliable supply of irrigation water against losses through evaporation. The optimal operation plan significantly minimizes the total evaporation loss from both reservoirs by providing the optimal storage levels in both reservoirs. This study provides the conceptual procedures of non-seasonal (ARIMA) model, and since the model is univariate, it demonstrates a strongly-reliable inflow prediction when existing information is limited to streamflow data as a predictor.