دانلود مقاله ISI انگلیسی شماره 142466
ترجمه فارسی عنوان مقاله

روش ترکیبی عمیق یادگیری برای شناسایی جزیره در تولید توزیع شده

عنوان انگلیسی
Deep learning hybrid method for islanding detection in distributed generation
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
142466 2018 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Energy, Volume 210, 15 January 2018, Pages 776-785

ترجمه کلمات کلیدی
انرژی توزیع، ریزشبکه، جزیره یادگیری عمیق، آنتروپی طیفی چندگانه اختصاصی،
کلمات کلیدی انگلیسی
Distributed energy; Microgrid; Islanding; Deep learning; Multi-resolution singular spectrum entropy;
پیش نمایش مقاله
پیش نمایش مقاله  روش ترکیبی عمیق یادگیری برای شناسایی جزیره در تولید توزیع شده

چکیده انگلیسی

The increasing penetration of distributed energy brings significant uncertainty and noises to microgrid operation, which enlarge the difficulty of microgrid monitoring. For as much as the detection of islanding is prone to be interfered by grid disturbance, island detection device may make misjudgment thus causing the consequence of distributed generations (DGs) out of service. The detection device must provide with the ability to differ islanding from grid disturbance. In this paper, the concept of deep learning is introduced into the classification of islanding and grid disturbance for the first time. A novel deep learning framework is proposed to detect and classify islanding or grid disturbance. The framework is a hybrid of wavelet transformation, multi-resolution singular spectrum entropy, and deep learning architecture. As a signal processing method after wavelet transformation, multi-resolution singular spectrum entropy combines multi-resolution analysis and spectrum analysis with entropy as output, from which we can extract the intrinsic different features between islanding and grid disturbance. With the features extracted, a deep learning based algorithm is proposed to classify islanding and grid disturbance. Simulation results indicate that the method can achieve its goal while being highly accurate, so the DGs mistakenly withdrawing from power grids can be avoided.