دانلود مقاله ISI انگلیسی شماره 142640
ترجمه فارسی عنوان مقاله

یک چارچوب کنترل غیر چابکی توزیع شده برای میکروپردازهای خودسازمانده با نسلهای غیرقابل همکاری و تجدیدپذیر

عنوان انگلیسی
A distributed non-Lipschitz control framework for self-organizing microgrids with uncooperative and renewable generations
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
142640 2017 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Electrical Power & Energy Systems, Volume 90, September 2017, Pages 267-279

پیش نمایش مقاله
پیش نمایش مقاله  یک چارچوب کنترل غیر چابکی توزیع شده برای میکروپردازهای خودسازمانده با نسلهای غیرقابل همکاری و تجدیدپذیر

چکیده انگلیسی

This paper investigates the design of robust distributed voltage and frequency control for a self-organized microgrid. A multiagent distributed secondary hierarchy is proposed using control Lyapunov function. Power resources are categorized as controllable and uncontrollable distributed generations (DG). Controllable DGs are exchanging information with neighbor DGs through agents at communication layer. The agents communicate to restore the voltage and frequency to their nominal references. Furthermore, the proposed scheme is robust against the insufficient data from uncontrollable DGs, since it provides an improved and stable operation even when there is no communication with uncontrollable DGs and loads. It can actively compensate for the random unknown demand and generation, by sharing the power mismatch in distributed droop architecture. It is shown that the suggested controller is capable of stabilizing an uncooperative microgrid in which not all DGs are cooperating. Also, the convergence speed of the system is improved using the finite-time controller. The performance and finite-time stability of a microgrid with partially-cooperative DGs is proved using Lyapunov theorem and is validated through numerical simulation. The results show improved transients, accurate steady state values for voltage and frequency control of a microgrid, and robustness against communication architecture variations. The impact of communication delays, the uncertainty in coupling gains of the communication links, and the time-interval between updating the controller and the states through communication are investigated.