دانلود مقاله ISI انگلیسی شماره 148929
ترجمه فارسی عنوان مقاله

پیشنهادات شخصی چند دوره ای شخصی

عنوان انگلیسی
Personalized multi-period tour recommendations
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
148929 2017 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Tourism Management, Volume 62, October 2017, Pages 76-88

پیش نمایش مقاله
پیش نمایش مقاله  پیشنهادات شخصی چند دوره ای شخصی

چکیده انگلیسی

During a trip planning, tourists gather information from different sources, select and rank the places to visit according to their personal interests, and try to devise daily tours among them. This paper addresses the complex selection and touring problem and proposes a “filter-first, tour-second” framework for generating personalized tour recommendations for tourists based on information from social media and other online data sources. Collaborative filtering is applied to identify a subset of optional points of interest that maximize the potential satisfaction, while there are some preselected mandatory points that the tourists must visit. Next, the underlying orienteering problem is solved via an Iterated Tabu Search algorithm. The goal is to generate tours that contain all mandatory points and maximize the total score collected from the optional points visited daily, taking into account different day availabilities and opening hours, limitations on the tour lengths, budgets and other restrictions. Computational experiments on benchmark datasets indicate that the proposed touring algorithm is very competitive. Furthermore, the proposed framework has been evaluated on data collected from Foursquare. The results show the practical utility and the temporal efficacy of the recommended tours.