دانلود مقاله ISI انگلیسی شماره 150386
ترجمه فارسی عنوان مقاله

الگوریتم ردیابی زیربنایی منحصر به فرد اصلی سریع و موثر است

عنوان انگلیسی
A fast and effective principal singular subspace tracking algorithm
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
150386 2017 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neurocomputing, Volume 267, 6 December 2017, Pages 201-209

ترجمه کلمات کلیدی
ارزش منحصر به فرد اصلی، زیرمجموعه اصلی منحصر به فرد، تجزیه مقدار منفرد، شبکه عصبی همبستگی،
کلمات کلیدی انگلیسی
Principal singular value; Principal singular subspace; Singular value decomposition; Cross-correlation neural network;
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم ردیابی زیربنایی منحصر به فرد اصلی سریع و موثر است

چکیده انگلیسی

In this paper, we propose a fast and effective neural network algorithm to perform singular value decomposition (SVD) of a cross-covariance matrix between two high-dimensional data streams. Firstly, we derive a dynamical system from a newly proposed information criterion. This system exhibits a single stable stationary point if and only if the weight matrices of the left and right neural networks span the left and right principal singular subspace of a cross-covariance matrix, respectively, and the other stationary points are (unstable) saddle points. Then, a principal singular subspace (PSS) tracking algorithm is obtained from the dynamical system. Moreover, convergence analysis shows that the proposed algorithm converges to a stationary point that relates to the principal singular values. Thus, compared with traditional algorithms who can only track the PSS, the proposed algorithm can not only track the PSS but also estimate all of the corresponding principal singular values based on the extracted subspace. Finally, numerical simulations and practical application are carried to further demonstrate the efficiency of the proposed algorithm.