دانلود مقاله ISI انگلیسی شماره 150480
ترجمه فارسی عنوان مقاله

یک الگوریتم شتاب دهنده پروگزیمال سریع برای بهینه سازی کامپوزیت غیرمتمرکز بر روی شبکه های هدایت شده

عنوان انگلیسی
A fast proximal gradient algorithm for decentralized composite optimization over directed networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
150480 2017 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Systems & Control Letters, Volume 107, September 2017, Pages 36-43

ترجمه کلمات کلیدی
بهینه سازی تصادفی، شبکه راننده، هدف کامپوزیت، غیر قابل نفوذ، اجماع، وفاق،
کلمات کلیدی انگلیسی
Decentralized optimization; Directed network; Composite objective; Nonconvex; Consensus;
پیش نمایش مقاله
پیش نمایش مقاله  یک الگوریتم شتاب دهنده پروگزیمال سریع برای بهینه سازی کامپوزیت غیرمتمرکز بر روی شبکه های هدایت شده

چکیده انگلیسی

This paper proposes a fast decentralized algorithm for solving a consensus optimization problem defined in a directed networked multi-agent system, where the local objective functions have the smooth+nonsmooth composite form, and are possibly nonconvex. Examples of such problems include decentralized compressed sensing and constrained quadratic programming problems, as well as many decentralized regularization problems. We extend the existing algorithms PG-EXTRA and ExtraPush to a new algorithm PG-ExtraPush for composite consensus optimization over a directed network. This algorithm takes advantage of the proximity operator like in PG-EXTRA to deal with the nonsmooth term, and employs the push-sum protocol like in ExtraPush to tackle the bias introduced by the directed network. With a proper step size, we show that PG-ExtraPush converges to an optimal solution at a linear rate under some regular assumptions. We conduct a series of numerical experiments to show the effectiveness of the proposed algorithm. Specifically, with a proper step size, PG-ExtraPush performs linear rates in most of cases, even in some nonconvex cases, and is significantly faster than Subgradient-Push, even if the latter uses a hand-optimized step size. The established theoretical results are also verified by the numerical results.