دانلود مقاله ISI انگلیسی شماره 150527
ترجمه فارسی عنوان مقاله

یک الگوریتم پیشنهادی سریع برای ساختن ماتریس سیستم برای یک مدل آبهای زیرزمینی کاهش یافته است

عنوان انگلیسی
A proposed Fast algorithm to construct the system matrices for a reduced-order groundwater model
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
150527 2017 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Advances in Water Resources, Volume 102, April 2017, Pages 68-83

ترجمه کلمات کلیدی
کاهش مدل، تجزیه مناسب متعادل، مدل سازی آب های زیرزمینی، ساخت ماتریس سیستم کارآمد،
کلمات کلیدی انگلیسی
Model reduction; Proper orthogonal decomposition; Groundwater modeling; Efficient system matrix construction;
پیش نمایش مقاله
پیش نمایش مقاله  یک الگوریتم پیشنهادی سریع برای ساختن ماتریس سیستم برای یک مدل آبهای زیرزمینی کاهش یافته است

چکیده انگلیسی

Past research has demonstrated that a reduced-order model (ROM) can be two-to-three orders of magnitude smaller than the original model and run considerably faster with acceptable error. A standard method to construct the system matrices for a ROM is Proper Orthogonal Decomposition (POD), which projects the system matrices from the full model space onto a subspace whose range spans the full model space but has a much smaller dimension than the full model space. This projection can be prohibitively expensive to compute if it must be done repeatedly, as with a Monte Carlo simulation. We propose a Fast Algorithm to reduce the computational burden of constructing the system matrices for a parameterized, reduced-order groundwater model (i.e. one whose parameters are represented by zones or interpolation functions). The proposed algorithm decomposes the expensive system matrix projection into a set of simple scalar-matrix multiplications. This allows the algorithm to efficiently construct the system matrices of a POD reduced-order model at a significantly reduced computational cost compared with the standard projection-based method. The developed algorithm is applied to three test cases for demonstration purposes. The first test case is a small, two-dimensional, zoned-parameter, finite-difference model; the second test case is a small, two-dimensional, interpolated-parameter, finite-difference model; and the third test case is a realistically-scaled, two-dimensional, zoned-parameter, finite-element model. In each case, the algorithm is able to accurately and efficiently construct the system matrices of the reduced-order model.