دانلود مقاله ISI انگلیسی شماره 156831
ترجمه فارسی عنوان مقاله

ویژگی های یادگیری برای تأیید امضای دستکاری آنلاین با استفاده از شبکه های عصبی کانولاسیون عمیق

عنوان انگلیسی
Learning features for offline handwritten signature verification using deep convolutional neural networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
156831 2017 39 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Pattern Recognition, Volume 70, October 2017, Pages 163-176

ترجمه کلمات کلیدی
تأیید امضا، شبکه عصبی مصنوعی، یادگیری ویژگی یادگیری عمیق،
کلمات کلیدی انگلیسی
Signature verification; Convolutional Neural Networks; Feature learning; Deep learning;
پیش نمایش مقاله
پیش نمایش مقاله  ویژگی های یادگیری برای تأیید امضای دستکاری آنلاین با استفاده از شبکه های عصبی کانولاسیون عمیق

چکیده انگلیسی

Verifying the identity of a person using handwritten signatures is challenging in the presence of skilled forgeries, where a forger has access to a person’s signature and deliberately attempt to imitate it. In offline (static) signature verification, the dynamic information of the signature writing process is lost, and it is difficult to design good feature extractors that can distinguish genuine signatures and skilled forgeries. This reflects in a relatively poor performance, with verification errors around 7% in the best systems in the literature. To address both the difficulty of obtaining good features, as well as improve system performance, we propose learning the representations from signature images, in a Writer-Independent format, using Convolutional Neural Networks. In particular, we propose a novel formulation of the problem that includes knowledge of skilled forgeries from a subset of users in the feature learning process, that aims to capture visual cues that distinguish genuine signatures and forgeries regardless of the user. Extensive experiments were conducted on four datasets: GPDS, MCYT, CEDAR and Brazilian PUC-PR datasets. On GPDS-160, we obtained a large improvement in state-of-the-art performance, achieving 1.72% Equal Error Rate, compared to 6.97% in the literature. We also verified that the features generalize beyond the GPDS dataset, surpassing the state-of-the-art performance in the other datasets, without requiring the representation to be fine-tuned to each particular dataset.