دانلود مقاله ISI انگلیسی شماره 157023
ترجمه فارسی عنوان مقاله

ارزیابی استحکام باند لنگر هنگام انجام عملیات دست زدن به لنگر با استفاده از روش شبکه های عصبی مصنوعی

عنوان انگلیسی
An assessment of anchor handling vessel stability during anchor handling operations using the method of artificial neural networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
157023 2017 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Ocean Engineering, Volume 140, 1 August 2017, Pages 292-308

پیش نمایش مقاله
پیش نمایش مقاله  ارزیابی استحکام باند لنگر هنگام انجام عملیات دست زدن به لنگر با استفاده از روش شبکه های عصبی مصنوعی

چکیده انگلیسی

The risk of vessel capsizing is inherent to anchor handling operations (AHOs). Lessons learned from the Bourbon Dolphin accident reveal that the large static heeling angle could not be prevented due to the lack of awareness of the vessel's stability status, which can be improved with the help of a suitable on-board monitoring system. Therefore, an on-board monitoring system is proposed for assessing stability in terms of the static heeling angle. However, a complete mathematical model is not available for estimating a static heeling angle as a function of operational parameters. Therefore, an artificial neural network (ANN)-based functional relationship has been established between the operational parameters and the static heeling angle. Furthermore, a parametric study has been performed to investigate the effect of neural network topology on network performance. The results show that an ANN topology that contains one hidden-layer is efficient enough to predict a static heeling angle. The correlation coefficient between the ANN model predictions and the target values is 0.999. This result shows that the ANN provides an accurate estimate of the static heeling angle as a function of the operational parameters. Therefore, the proposed mathematical model can be used for assessing a vessel's stability during AHOs.