دانلود مقاله ISI انگلیسی شماره 159942
ترجمه فارسی عنوان مقاله

یک اکوسیستم برای تشخیص و کاهش ناهنجاری در شبکه های تعریف شده توسط نرم افزار

عنوان انگلیسی
An ecosystem for anomaly detection and mitigation in software-defined networking
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
159942 2018 42 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 104, 15 August 2018, Pages 121-133

پیش نمایش مقاله
پیش نمایش مقاله  یک اکوسیستم برای تشخیص و کاهش ناهنجاری در شبکه های تعریف شده توسط نرم افزار

چکیده انگلیسی

Along with the rapid growth of computer networks comes the need for automating management functions to prevent errors in decision-making and reduce the cost of ordinary operations. Software-defined networking (SDN) is an emergent paradigm that aims to support next-generation networks through its flexible and powerful management mechanisms. Although SDN provides greater control over traffic flow, its security and availability remain a challenge. The major contribution of this paper is to present an SDN-based ecosystem that monitors network traffic and proactively detects anomalies which may impair proper network functioning. When an anomalous event is recognized, the proposal conducts a more active analysis to inspect irregularities at the network traffic flow level. Detecting such problems quickly is essential to take appropriate countermeasures. In this manner, the potential for centralized network monitoring based on SDN with OpenFlow is addressed in order to evaluate mitigation policies against threats. Experimental results demonstrate the proposed ecosystem succeeds in achieving higher detection rates compared to other approaches. In addition, the performance analysis shows that our approach can efficiently contribute to the network’s resilience.