دانلود مقاله ISI انگلیسی شماره 159967
ترجمه فارسی عنوان مقاله

تشخیص عدم انطباق حفظ حریم خصوصی برای تصمیم گیری کیفیت مطمئن در شهرهای هوشمند

عنوان انگلیسی
Privacy-preserving anomaly detection in the cloud for quality assured decision-making in smart cities
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
159967 2018 47 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Parallel and Distributed Computing, Available online 11 January 2018

پیش نمایش مقاله
پیش نمایش مقاله  تشخیص عدم انطباق حفظ حریم خصوصی برای تصمیم گیری کیفیت مطمئن در شهرهای هوشمند

چکیده انگلیسی

Rapid urbanisation places extensive demands on city services and infrastructure that mandate innovative and sustainable solutions which increasingly involve streamlined monitoring, collection, storage and analysis of massive, heterogeneous data. Analytics services, such as anomaly detection, work to both extract knowledge and support decision-making mechanisms that enable smart functionality over such contexts. However, data privacy and data quality remain significant challenges to assuring the quality of decision-making. This paper introduces a scalable, cloud-based model to provide a privacy preserving anomaly detection service for quality assured decision-making in smart cities. Homomorphic encryption is employed to preserve data privacy during the analysis and MapReduce based distribution of tasks and parallelisation is used to overcome computational overheads associated with homomorphic encryption. Experiments demonstrate that a high level of accuracy is maintained for anomaly detection performed on encrypted data with the adopted distributed data processing approach significantly reducing associated computational overheads.