دانلود مقاله ISI انگلیسی شماره 159972
ترجمه فارسی عنوان مقاله

در حال رشد در حال رشد گاز عصبی برای تشخیص ناهنجاری در تغییر صحنه های نظارت

عنوان انگلیسی
Online growing neural gas for anomaly detection in changing surveillance scenes
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
159972 2017 43 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Pattern Recognition, Volume 64, April 2017, Pages 187-201

ترجمه کلمات کلیدی
تشخیص آنومالی، نظارت تصویری، یادگیری بی نظیر،
کلمات کلیدی انگلیسی
Anomaly detection; Video surveillance; Unsupervised learning;
پیش نمایش مقاله
پیش نمایش مقاله  در حال رشد در حال رشد گاز عصبی برای تشخیص ناهنجاری در تغییر صحنه های نظارت

چکیده انگلیسی

Anomaly detection is still a challenging task for video surveillance due to complex environments and unpredictable human behaviors. Most existing approaches train offline detectors using manually labeled data and predefined parameters, and are hard to model changing scenes. This paper introduces a neural network based model called online Growing Neural Gas (online GNG) to perform an unsupervised learning. Unlike a parameter-fixed GNG, our model updates learning parameters continuously, for which we propose several online neighbor-related strategies. Specific operations, namely neuron insertion, deletion, learning rate adaptation and stopping criteria selection, get upgraded to online modes. In the anomaly detection stage, the behavior patterns far away from our model are labeled as anomalous, for which far away is measured by a time-varying threshold. Experiments are implemented on three surveillance datasets, namely UMN, UCSD Ped1/Ped2 and Avenue dataset. All datasets have changing scenes due to mutable crowd density and behavior types. Anomaly detection results show that our model can adapt to the current scene rapidly and reduce false alarms while still detecting most anomalies. Quantitative comparisons with 12 recent approaches further confirm our superiority.