دانلود مقاله ISI انگلیسی شماره 159996
ترجمه فارسی عنوان مقاله

یک رویکرد مبتنی بر آبشاری آماری بی نهایت برای تشخیص ناهنجاری برای شبکه های اجتماعی پویا

عنوان انگلیسی
A statistical infinite feature cascade-based approach to anomaly detection for dynamic social networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
159996 2017 21 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computer Communications, Volume 100, 1 March 2017, Pages 52-64

ترجمه کلمات کلیدی
شبکه های اجتماعی پویا، تشخیص آنومالی، آبشار ویژگی، مدلسازی آماری،
کلمات کلیدی انگلیسی
Dynamic social networks; Anomaly detection; Feature cascade; Statistical modeling;
پیش نمایش مقاله
پیش نمایش مقاله  یک رویکرد مبتنی بر آبشاری آماری بی نهایت برای تشخیص ناهنجاری برای شبکه های اجتماعی پویا

چکیده انگلیسی

The development of methods for anomaly detection in dynamic ubiquitous online social networks is critical to coincide with the growth in social network usage. This paper presents a novel statistical approach to anomaly detection in dynamic social networks. The approach relies upon the fact that the network dynamics can be driven by microscopic features of each node that dynamically cascade to neighboring nodes over time. The proposed approach consists of two main components: (1) normal modeling component and (2) anomaly detection component. The former component is involved in three main processes, governing the network dynamics. The first process is the features’ birth, death, and lifetime, which is assumed to follow a realistic statistical distribution in this paper for the very first time. The second process is the evolution of nodes’ features that is modeled by an Infinite Factorial Hidden Markov Model (IFHMM), considering feature cascade. The feature cascade is a phenomenon that explicitly describes how the past features of each node affect the features of its neighboring nodes in future. The third process modeled in this paper is the relationship between nodes’ features and link generation in dynamic social networks. The latter component of the proposed approach provides a new method to quantize deviation of network dynamics from the normal behavior. Some Markov Chain Monte Carlo (MCMC) sampling strategies have been used to simulate parameters of the proposed model, given social network data. The proposed anomaly detection approach is validated by experiments on synthetic and real social network datasets. Experimental results show that this approach outperforms other related approaches in terms of some statistical performance measures, especially applied to binary normal-abnormal classification test.