دانلود مقاله ISI انگلیسی شماره 160025
ترجمه فارسی عنوان مقاله

یک چارچوب ترکیبی سلسله مراتبی برای مدل سازی رفتارهای غیرمعمول

عنوان انگلیسی
A hierarchical hybrid framework for modelling anomalous behaviours
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
160025 2018 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Simulation Modelling Practice and Theory, Volume 82, March 2018, Pages 103-115

ترجمه کلمات کلیدی
چارچوب نرم افزار، مدل سازی بی نظمی، تشخیص آنومالی، تشخیص امضا، تحلیل داده ها،
کلمات کلیدی انگلیسی
Software framework; Anomalous behaviour modelling; Anomaly detection; Signature detection; Data analysis;
پیش نمایش مقاله
پیش نمایش مقاله  یک چارچوب ترکیبی سلسله مراتبی برای مدل سازی رفتارهای غیرمعمول

چکیده انگلیسی

The presence of anomalies in collected information, i.e. data that deviates substantially from what is normally expected, is a valuable source of knowledge and its discovery has many practical applications. Anomaly-detection approaches rely on building models that suitably describe data patterns deemed as normal, however they may incur the generation of a considerable amount of false positives. Signature-based techniques, which exploit a prior knowledge base of anomalous patterns, are able to effectively detect them but fail in identifying anomalies which did not occur previously. Hybrid anomaly detection systems combine the two approaches in order to obtain better detection performances. This paper proposes a framework, called HALF, that allows to develop hybrid systems by combining available techniques, coming from both approaches. HALF is able to operate on any data type and provides native support to online learning, or concept drifting. This enables the incremental updating of the knowledge bases used by the techniques. HALF has been designed to accommodate multiple mining algorithms by organizing them in a hierarchical structure in order to offer an higher and flexible detection capability. The framework effectiveness is demonstrated through two case studies concerning a network intrusion detection system and a steganography hunting system.