دانلود مقاله ISI انگلیسی شماره 46162
ترجمه فارسی عنوان مقاله

مکانیزم محلی سازی چندگسلی مبتنی بر بهینه سازی کلونی مورچه در شبکه های نوری الاستیک

عنوان انگلیسی
Ant colony optimization based multi-faults localization mechanism in elastic optical networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46162 2015 5 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Optik - International Journal for Light and Electron Optics, Volume 126, Issue 1, January 2015, Pages 45–49

ترجمه کلمات کلیدی
شبکه های نوری الاستیک - بقای شبکه - محلی سازی چندگسلی - بهینه سازی کلونی مورچه
کلمات کلیدی انگلیسی
Elastic optical networks; Network survivability; Multi-faults localization; Ant colony optimization
پیش نمایش مقاله
پیش نمایش مقاله  مکانیزم محلی سازی چندگسلی مبتنی بر بهینه سازی کلونی مورچه در شبکه های نوری الاستیک

چکیده انگلیسی

In order to withstand and recovery from multi-faults in elastic optical networks, we propose a novel multi-fault localization mechanism based on ant colony optimization and mixed line-rates. Multi-faults localization has been proved to be a NP-complete problem in wavelength switched optical networks, and all existing multi-faults localization algorithms require time that is super polynomial in the input size. Furthermore, multi-faults localization in elastic optical networks gets new features that the affected high-bit-rate services will play a greater role than the affected low-bit-rate services. In order to handle the mixed line-rates, we introduce the dependency metric which is used to describe dependency between alarms and likely causes. We establish the linear programming model for multi-faults localization and propose an objective function while considering the mixed line-rates. We implement the ant colony optimization based multi-faults localization mechanism on the stateful PCE-based multi-domain elastic optical networks test bed. The numerical results show that ant colony optimization based multi-faults localization mechanism has low flooding time and alarm packets, high success rate compared with the existing localization algorithms. We choose the best configuration of ant colony optimization based multi-faults localization by adjusting the parameters.