دانلود مقاله ISI انگلیسی شماره 46171
ترجمه فارسی عنوان مقاله

یک ترکیب از بهینه سازی کلونی مورچه و الگوریتم کلونی زنبور عسل مصنوعی برای قرار دادن بهینه احتمالی و اندازه یابی منابع انرژی پراکنده

عنوان انگلیسی
A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic optimal placement and sizing of distributed energy resources
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46171 2015 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Energy Conversion and Management, Volume 92, 1 March 2015, Pages 149–161

ترجمه کلمات کلیدی
بهینه سازی کلونی مورچه (ACO) - کلونی زنبور عسل مصنوعی (ABC) - بهینه سازی چندهدفه - مکان بهینه - روش برآورد نقطه (PEM) - انرژی تجدیدپذیر - ACO-ABC ترکیبی
کلمات کلیدی انگلیسی
Ant colony optimization (ACO); Artificial bee colony (ABC); Multi-objective optimization; Optimal placement; Point estimate method (PEM); Renewable energy; Hybrid ACO–ABC
پیش نمایش مقاله
پیش نمایش مقاله  یک ترکیب از بهینه سازی کلونی مورچه و الگوریتم کلونی زنبور عسل مصنوعی برای قرار دادن بهینه احتمالی و اندازه یابی منابع انرژی پراکنده

چکیده انگلیسی

In this paper, a hybrid configuration of ant colony optimization (ACO) with artificial bee colony (ABC) algorithm called hybrid ACO–ABC algorithm is presented for optimal location and sizing of distributed energy resources (DERs) (i.e., gas turbine, fuel cell, and wind energy) on distribution systems. The proposed algorithm is a combined strategy based on the discrete (location optimization) and continuous (size optimization) structures to achieve advantages of the global and local search ability of ABC and ACO algorithms, respectively. Also, in the proposed algorithm, a multi-objective ABC is used to produce a set of non-dominated solutions which store in the external archive. The objectives consist of minimizing power losses, total emissions produced by substation and resources, total electrical energy cost, and improving the voltage stability. In order to investigate the impact of the uncertainty in the output of the wind energy and load demands, a probabilistic load flow is necessary. In this study, an efficient point estimate method (PEM) is employed to solve the optimization problem in a stochastic environment. The proposed algorithm is tested on the IEEE 33- and 69-bus distribution systems. The results demonstrate the potential and effectiveness of the proposed algorithm in comparison with those of other evolutionary optimization methods.