دانلود مقاله ISI انگلیسی شماره 46173
ترجمه فارسی عنوان مقاله

الگوریتم کلنی مورچگان (ACA) برای حل مدل یکپارچه جدید از برنامه ریزی تولید کارگاهی و مسیریابی بدن تزاحم AGV ها

عنوان انگلیسی
A new hybrid method based on Particle Swarm Optimization, Ant Colony Optimization and 3-Opt algorithms for Traveling Salesman Problem
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46173 2015 7 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 30, May 2015, Pages 484–490

ترجمه کلمات کلیدی
بهینه سازی ازدحام ذرات - بهینه سازی کلونی مورچه - الگوریتم 3-OPT - مسئله فروشنده دوره گرد
کلمات کلیدی انگلیسی
Particle Swarm Optimization; Ant Colony Optimization; 3-Opt algorithm; Traveling Salesman Problem
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم کلنی مورچگان (ACA) برای حل مدل یکپارچه جدید از برنامه ریزی تولید کارگاهی و مسیریابی بدن تزاحم AGV ها

چکیده انگلیسی

The Traveling Salesman Problem (TSP) is one of the standard test problems used in performance analysis of discrete optimization algorithms. The Ant Colony Optimization (ACO) algorithm appears among heuristic algorithms used for solving discrete optimization problems. In this study, a new hybrid method is proposed to optimize parameters that affect performance of the ACO algorithm using Particle Swarm Optimization (PSO). In addition, 3-Opt heuristic method is added to proposed method in order to improve local solutions. The PSO algorithm is used for detecting optimum values of parameters α and β which are used for city selection operations in the ACO algorithm and determines significance of inter-city pheromone and distances. The 3-Opt algorithm is used for the purpose of improving city selection operations, which could not be improved due to falling in local minimums by the ACO algorithm. The performance of proposed hybrid method is investigated on ten different benchmark problems taken from literature and it is compared to the performance of some well-known algorithms. Experimental results show that the performance of proposed method by using fewer ants than the number of cities for the TSPs is better than the performance of compared methods in most cases in terms of solution quality and robustness.