دانلود مقاله ISI انگلیسی شماره 46214
ترجمه فارسی عنوان مقاله

انتخاب ویژگی ارتباط - افزونگی بر اساس بهینه سازی کلونی مورچه

عنوان انگلیسی
Relevance–redundancy feature selection based on ant colony optimization
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46214 2015 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Pattern Recognition, Volume 48, Issue 9, September 2015, Pages 2798–2811

ترجمه کلمات کلیدی
الگو شناسی - لعنت ابعاد - انتخاب ویژگی - روش های چند متغیره - مدل فیلتر - بهینه سازی کلونی مورچه
کلمات کلیدی انگلیسی
Pattern recognition; Curse of dimensionality; Feature selection; Multivariate technique; Filter model; Ant colony optimization
پیش نمایش مقاله
پیش نمایش مقاله  انتخاب ویژگی ارتباط - افزونگی بر اساس بهینه سازی کلونی مورچه

چکیده انگلیسی

The curse of dimensionality is a well-known problem in pattern recognition in which the number of patterns is smaller than the number of features in the datasets. Often, many of the features are irrelevant and redundant for the classification tasks. Therefore, the feature selection becomes an essential technique to reduce the dimensionality of the datasets. In this paper, unsupervised and multivariate filter-based feature selection methods are proposed by analyzing the relevance and redundancy of features. In the methods, the search space is represented as a graph and then the ant colony optimization is used to rank the features. Furthermore, a novel heuristic information measure is proposed to improve the accuracy of the methods by considering the similarity between subsets of features. The performance of the proposed methods was compared to the well-known univariate and multivariate methods using different classifiers. The results indicated that the proposed methods outperform the existing methods.