دانلود مقاله ISI انگلیسی شماره 52565
ترجمه فارسی عنوان مقاله

زمان واقعی تشخیص خستگی سیستم کاملا اتوماتیک رانندگان از طریق سیستم های خبره فازی

عنوان انگلیسی
Fully automated real time fatigue detection of drivers through Fuzzy Expert Systems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
52565 2014 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 18, May 2014, Pages 25–38

ترجمه کلمات کلیدی
فیلتر کالمن - منطق فازی - سیستم های خبره فازی - نظارت هوشیاری - تشخیص خستگی
کلمات کلیدی انگلیسی
s-FCM; Kalman filter; Fuzzy logic; Fuzzy Expert Systems; Vigilance monitoring; Fatigue detection
پیش نمایش مقاله
پیش نمایش مقاله  زمان واقعی تشخیص خستگی سیستم کاملا اتوماتیک رانندگان از طریق سیستم های خبره فازی

چکیده انگلیسی

This paper presents a non-intrusive fatigue detection system based on the video analysis of drivers. The system relies on multiple visual cues to characterize the level of alertness of the driver. The parameters used for detecting fatigue are: eye closure duration measured through eye state information and yawning analyzed through mouth state information. Initially, the face is located through Viola–Jones face detection method to ensure the presence of driver in video frame. Then, a mouth window is extracted from the face region, in which lips are searched through spatial fuzzy c-means (s-FCM) clustering. Simultaneously, the pupils are also detected in the upper part of the face window on the basis of radii, inter-pupil distance and angle. The monitored information of eyes and mouth are further passed to Fuzzy Expert System (FES) that classifies the true state of the driver. The system has been tested using real data, with different sequences recorded in day and night driving conditions, and with users belonging to different race and gender. The system yielded an average accuracy of 100% on all the videos on which it was tested.