دانلود مقاله ISI انگلیسی شماره 54107
ترجمه فارسی عنوان مقاله

پیش بینی بار الکتریکی قدرت حالت دولتی کوتاه مدت در ماهاراشترا با تاکید ویژه بر تغییرات فصلی با استفاده از یک فاصله زمانی جدید با توجه به شبکه عصبی مجدد بر اساس مدل شبکه عصبی تاخیر زمان

عنوان انگلیسی
Short-term Maharashtra state electrical power load prediction with special emphasis on seasonal changes using a novel focused time lagged recurrent neural network based on time delay neural network model
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
54107 2011 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 38, Issue 3, March 2011, Pages 1554–1564

چکیده انگلیسی

Experimental results indicate that the FTLRNN with time delay neural network (TDNN) clearly outperformed the gamma and laguarre based short-term memory structure in various performance metrics such as mean square error (MSE), normalized MSE, correlation coefficient (r) and mean absolute percentage error (MAPE) during evaluation process. Empirical results show that the proposed dynamic NN model consistently performs well on daily, weekly, and monthly average basis in terms of prediction accuracy. It is noticed from the literature review that an optimally configured FTLRNN with multi-channel tapped delay line memory structure is not currently available to solve short-term electrical power load prediction. The proposed method gives acceptable errors in all seasons, months and on daily basis. The average prediction error on three weeks is obtained as low as 1.67%.