دانلود مقاله ISI انگلیسی شماره 54159
ترجمه فارسی عنوان مقاله

پیش بینی تولید برق کامل بار یک نیروگاه ترکیبی با استفاده از سیستم پایه با استفاده از روش یادگیری ماشین

عنوان انگلیسی
Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
54159 2014 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Electrical Power & Energy Systems, Volume 60, September 2014, Pages 126–140

ترجمه کلمات کلیدی
پیش بینی خروجی برق، نیروگاههای ترکیبی چرخه، روش های یادگیری ماشین
کلمات کلیدی انگلیسی
Prediction of electrical power output; Combined cycle power plants; Machine learning methods

چکیده انگلیسی

Predicting full load electrical power output of a base load power plant is important in order to maximize the profit from the available megawatt hours. This paper examines and compares some machine learning regression methods to develop a predictive model, which can predict hourly full load electrical power output of a combined cycle power plant. The base load operation of a power plant is influenced by four main parameters, which are used as input variables in the dataset, such as ambient temperature, atmospheric pressure, relative humidity, and exhaust steam pressure. These parameters affect electrical power output, which is considered as the target variable. The dataset, which consists of these input and target variables, was collected over a six-year period. First, based on these variables the best subset of the dataset is explored among all feature subsets in the experiments. Then, the most successful machine learning regression method is sought for predicting full load electrical power output. Thus, the best performance of the best subset, which contains a complete set of input variables, has been observed using the most successful method, which is Bagging algorithm with REPTree, with a mean absolute error of 2.818 and a Root Mean-Squared Error of 3.787.