دانلود مقاله ISI انگلیسی شماره 56287
ترجمه فارسی عنوان مقاله

مدل سازی و شبیه سازی مبتنی بر بهینه سازی ردیاب برای کنترل توان راکتیو هوشمند یک سیستم قدرت هیبریدی جدا شده

عنوان انگلیسی
Modeling and seeker optimization based simulation for intelligent reactive power control of an isolated hybrid power system
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
56287 2013 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Swarm and Evolutionary Computation, Volume 13, December 2013, Pages 85–100

ترجمه کلمات کلیدی
ژنراتور القایی؛ پایدارساز سیستم قدرت - الگوریتم بهینه سازی جستجوگر ؛ جبران VAR استاتیک - ژنراتور سنکرون؛سیستم قدرت هیبریدی بادی دیزلی
کلمات کلیدی انگلیسی
Induction generator; Power system stabilizer; Seeker optimization algorithm; Static VAR compensator; Synchronous generator; Wind–diesel hybrid power system
پیش نمایش مقاله
پیش نمایش مقاله  مدل سازی و شبیه سازی مبتنی بر بهینه سازی ردیاب برای کنترل توان راکتیو هوشمند یک سیستم قدرت هیبریدی جدا شده

چکیده انگلیسی

Seeker optimization algorithm (SOA) is a novel heuristic population-based search algorithm based on the concept of simulating the act of human searching. In SOA, the acts of human searching capability and understanding are exploited for the purpose of optimization. In this algorithm, search direction is based on empirical gradient by evaluating the response to the position changes and the step length is based on uncertainty reasoning by using a simple fuzzy rule. In this paper, effectiveness of the SOA has been tested for optimized reactive power control of an isolated wind–diesel hybrid power system model. In the studied power system model, a diesel engine based synchronous generator (SG) and a wind turbine based induction generator (IG) are used for the purpose of power generation. IG offers many advantages over the SG but it requires reactive power support for its operation. So, there is a gap between reactive power demand and its supply. To minimize this gap between reactive power generation and its demand, a variable source of reactive power such as static VAR compensator (SVC) is used. The SG is equipped with IEEE type-I excitation system and dual input power system stabilizer (PSS) like IEEE-PSS3B. The performance analysis of a Takagi–Sugeno fuzzy logic (TSFL)-based controller for the studied isolated hybrid power system model is also carried out which tracks the degree of reactive power compensation for any sort of input perturbation in real-time. In time-domain simulation of the investigated power system model, the proposed SOA–TSFL yields on-line, off-nominal coordinated optimal SVC and PSS parameters resulting in on-line optimal reactive power control and terminal voltage response. The performance of the proposed controller, with the influence of signal transmission delay, has also been investigated.