دانلود مقاله ISI انگلیسی شماره 56347
ترجمه فارسی عنوان مقاله

الگوریتم تکاملی مبتنی بر فازی برای بهینه سازی توان راکتیو با ادوات FACTS

عنوان انگلیسی
Fuzzy based evolutionary algorithm for reactive power optimization with FACTS devices
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
56347 2014 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Electrical Power & Energy Systems, Volume 61, October 2014, Pages 39–47

ترجمه کلمات کلیدی
ادوات FACTS؛ تابع عضویت فازی؛ هزینه های عملیاتی؛ الگوریتم ژنتیک؛ تکامل دیفرانسیل؛ بهینه سازی ازدحام ذرات
کلمات کلیدی انگلیسی
FACTS devices; Fuzzy membership function; Operating cost; Genetic Algorithm; Differential Evolution; Particle Swarm Optimization
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم تکاملی مبتنی بر فازی برای بهینه سازی توان راکتیو با ادوات FACTS

چکیده انگلیسی

In this paper, optimization techniques such as Genetic Algorithm (GA) and Differential Evolution (DE) along with Fuzzy Logic (FL) is used for the optimal setting of power system variables, including Flexible AC Transmission Systems (FACTS) devices. Here, two types of FACTS devices, Thyristor Controlled Series Compensator (TCSC) and Static Var Compensator (SVC) are used for the optimal operation of the power system as well as in reducing congestion in transmission lines. Optimal placement of FACTS devices in the heavily loaded power system reduces transmission loss, controls reactive power flow, improves voltage profile of all nodes and also reduces operating cost. In this proposed approach fuzzy membership function is used for the selection of weak nodes in the power system for the placement of SVC’s as one of the FACTS devices while the location of TCSC’s are determined by the reactive power flow in lines. The proposed technique is compared with other optimization methods using different globally accepted evolutionary algorithms where the nodes are detected by eigen value analysis and the amount of FACTS devices are determined by evolutionary techniques like, Genetic Algorithm (GA), Differential Evolution (DE) and Particle Swarm Optimization (PSO). The superiority of the proposed fuzzy based optimization approach is established by the results and the comparative analysis with other methods.