دانلود مقاله ISI انگلیسی شماره 56422
ترجمه فارسی عنوان مقاله

روش نقطه داخلی تجزیه - هماهنگی و کاربرد آن در جریان توان راکتیو بهینه چندمنطقه ای

عنوان انگلیسی
Decomposition–coordination interior point method and its application to multi-area optimal reactive power flow
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
56422 2011 6 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Electrical Power & Energy Systems, Volume 33, Issue 1, January 2011, Pages 55–60

ترجمه کلمات کلیدی
محاسبات توزیع شده؛ روش نقطه داخلی؛ مشکلات چندمنطقه ای؛ جریان توان راکتیو بهینه ؛ تجزیه سیستم قدرت
کلمات کلیدی انگلیسی
Distributed calculations; Interior point method; Multi-area problems; Optimal reactive power flow; Power system decomposition
پیش نمایش مقاله
پیش نمایش مقاله  روش نقطه داخلی تجزیه - هماهنگی و کاربرد آن در جریان توان راکتیو بهینه چندمنطقه ای

چکیده انگلیسی

A decomposition–coordination interior point method (DIPM) is presented and applied to the multi-area optimal reactive power flow (ORPF) problem in this paper. In the method, the area distributed ORPF problem is first formed by introducing duplicated border variables. Then the nonlinear primal dual interior point method (IPM) is directly applied to the distributed ORPF problem in which a Newton system with border-matrix-blocks is formulated. Finally the overall ORPF problem is solved in decomposition iterations with the Newton system being decoupled. The proposed DIPM inherits the good performance of the traditional IPM with a feature appropriate for distributed calculations among multiple areas. It can be easily extended to other distributed optimization problems of power systems. Numeric results of five IEEE Test Systems are demonstrated and comparisons are made with those obtained using the traditional auxiliary problem principle (APP) method. The results show that the DIPM for the multi-area OPRF problem requires less iterations and CPU time, has better stability in convergence, and reaches better optimality compared to the traditional auxiliary problem principle method.