دانلود مقاله ISI انگلیسی شماره 65564
ترجمه فارسی عنوان مقاله

با استفاده از پارادایم چند سطحی بر اساس گروه بندی چندگانه مبتنی بر چندگانه

عنوان انگلیسی
Multi-threaded modularity based graph clustering using the multilevel paradigm
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
65564 2015 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Parallel and Distributed Computing, Volume 76, February 2015, Pages 66–80

ترجمه کلمات کلیدی
خوشه بندی گراف، پارادایم چندسطحی، چند موضوع به اشتراک گذاشته شده با حافظه موازی
کلمات کلیدی انگلیسی
Graph clustering; Multilevel paradigm; Multi-threading; Shared-memory parallel

چکیده انگلیسی

In this paper we apply the multilevel paradigm to the modularity graph clustering problem. We improve upon the state of the art by introducing new efficient methods for coarsening graphs, creating initial clusterings, and performing local refinement on the resulting clusterings. We establish that for a graph with nn vertices and mm edges, these algorithms have an O(m+n)O(m+n) runtime complexity and an O(m+n)O(m+n) space complexity, and show that in practice they are extremely fast. We present shared-memory parallel formulations of these algorithms to take full advantage of modern architectures, which we show have a parallel runtime of O(m/p+n/p+k)O(m/p+n/p+k), where pp is the number of threads and kk is the number of clusters. Finally, we present the product of this research, the clustering tool Nerstrand. 1 In serial mode, Nerstrand runs in a fraction of the time of current methods and produces results of equal quality. When run in parallel mode, Nerstrand exhibits significant speedup with less than one percent degradation of clustering quality. Nerstrand   works well on large graphs, clustering a graph with over 105105 million vertices and 3.33.3 billion edges in 90 s.