دانلود مقاله ISI انگلیسی شماره 76881
ترجمه فارسی عنوان مقاله

یک الگوریتم انتخاب منفی مرز ثابت با یادگیری انطباقی آنلاین تحت نمونه های کوچک برای تشخیص ناهنجاری

عنوان انگلیسی
A boundary-fixed negative selection algorithm with online adaptive learning under small samples for anomaly detection
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
76881 2016 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Engineering Applications of Artificial Intelligence, Volume 50, April 2016, Pages 93–105

ترجمه کلمات کلیدی
سیستم ایمنی مصنوعی؛ الگوریتم انتخاب منفی؛ تشخیص ناهنجاری؛ یادگیری انطباقی آنلاین
کلمات کلیدی انگلیسی
Artificial immune system; Negative selection algorithm; Anomaly detection; Online adaptive learning

چکیده انگلیسی

The traditional negative selection algorithm (NSA) lacks online adaptive learning ability, and this restricts its application range. A new NSA, boundary-fixed negative selection algorithm with online adaptive learning under small samples (OALFB-NSA), is proposed in this paper. Boundary-fixed negative selection algorithm (FB-NSA) generates a layer of detectors, which are around the self space. These detectors are only related to the training samples, and have nothing to do with the training times. OALFB-NSA detectors can adapt themselves to real-time variety of self space during the testing stage. Experimental comparison among FB-NSA, V-detector and other anomaly detection algorithms on Iris data sets and biomedical dataset shows that the FB-NSA can obtain the higher detection rate and lower false alarm rate in most cases. The experimental comparison between OALFB-NSA, interface detector with online adaptive learning under small training samples (OALI-detector) and V-detector on Iris data sets shows that when overfitting does not occur, the OALFB-NSA can obtain the higher detection rate and lower false alarm rate, even if only one self sample is used for training.