دانلود مقاله ISI انگلیسی شماره 76882
ترجمه فارسی عنوان مقاله

بررسی تکنیک های تشخیص ناهنجاری در حوزه مالی

عنوان انگلیسی
A survey of anomaly detection techniques in financial domain
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
76882 2016 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Future Generation Computer Systems, Volume 55, February 2016, Pages 278–288

ترجمه کلمات کلیدی
خوشه بندی؛ تشخیص تقلب؛ تشخیص ناهنجاری
کلمات کلیدی انگلیسی
Clustering; Fraud detection; Anomaly detection
پیش نمایش مقاله
پیش نمایش مقاله  بررسی تکنیک های تشخیص ناهنجاری در حوزه مالی

چکیده انگلیسی

Anomaly detection is an important data analysis task. It is used to identify interesting and emerging patterns, trends and anomalies from data. Anomaly detection is an important tool to detect abnormalities in many different domains including financial fraud detection, computer network intrusion, human behavioural analysis, gene expression analysis and many more. Recently, in the financial sector, there has been renewed interest in research on detection of fraudulent activities. There has been a lot of work in the area of clustering based unsupervised anomaly detection in the financial domain. This paper presents an in-depth survey of various clustering based anomaly detection technique and compares them from different perspectives. In addition, we discuss the lack of real world data and how synthetic data has been used to validate current detection techniques.