دانلود مقاله ISI انگلیسی شماره 76883
ترجمه فارسی عنوان مقاله

تشخیص ناهنجاری و طرح شناسایی برای مهاجرت زنده VM در زیرساخت های ابر ☆

عنوان انگلیسی
Anomaly detection and identification scheme for VM live migration in cloud infrastructure ☆
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
76883 2016 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Future Generation Computer Systems, Volume 56, March 2016, Pages 736–745

ترجمه کلمات کلیدی
تشخیص ناهنجاری؛ امنیت؛ مجازی سازی
کلمات کلیدی انگلیسی
Anomaly detection; Security; Virtualization
پیش نمایش مقاله
پیش نمایش مقاله  تشخیص ناهنجاری و طرح شناسایی برای مهاجرت زنده VM در زیرساخت های ابر ☆

چکیده انگلیسی

Virtual machines (VM) offer simple and practical mechanisms to address many of the manageability problems of leveraging heterogeneous computing resources. VM live migration is an important feature of virtualization in cloud computing: it allows administrators to transparently tune the performance of the computing infrastructure. However, VM live migration may open the door to security threats. Classic anomaly detection schemes such as Local Outlier Factors (LOF) fail in detecting anomalies in the process of VM live migration. To tackle such critical security issues, we propose an adaptive scheme that mines data from the cloud infrastructure in order to detect abnormal statistics when VMs are migrated to new hosts. In our scheme, we extend classic Local Outlier Factors (LOF) approach by defining novel dimension reasoning (DR) rules as DR-LOF to figure out the possible sources of anomalies. We also incorporate Symbolic Aggregate ApproXimation (SAX) to enable timing information exploration that LOF ignores. In addition, we implement our scheme with an adaptive procedure to reduce chances of performance instability. Compared with LOF that fails in detecting anomalies in the process of VM live migration, our scheme is able not only to detect anomalies but also to identify their possible sources, giving cloud computing operators important clues to pinpoint and clear the anomalies. Our scheme further outperforms other classic clustering tools in WEKA (Waikato Environment for Knowledge Analysis) with higher detection rates and lower false alarm rate. Our scheme would serve as a novel anomaly detection tool to improve security framework in VM management for cloud computing.