دانلود مقاله ISI انگلیسی شماره 76896
ترجمه فارسی عنوان مقاله

مدل سازی بافت فضا-زمانی برای تشخیص ناهنجاری جمعیت زمان واقعی

عنوان انگلیسی
Spatio-temporal texture modelling for real-time crowd anomaly detection
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
76896 2016 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computer Vision and Image Understanding, Volume 144, March 2016, Pages 177–187

ترجمه کلمات کلیدی
ناهنجاری جمعیت؛ حجم فضا-زمانی؛ بافت فضا-زمانی
کلمات کلیدی انگلیسی
Crowd anomaly; Spatio-temporal volume; Spatio-temporal texture
پیش نمایش مقاله
پیش نمایش مقاله  مدل سازی بافت فضا-زمانی برای تشخیص ناهنجاری جمعیت زمان واقعی

چکیده انگلیسی

With the rapidly increasing demands from surveillance and security industries, crowd behaviour analysis has become one of the hotly pursued video event detection frontiers within the computer vision arena in recent years. This research has investigated innovative crowd behaviour detection approaches based on statistical crowd features extracted from video footages. In this paper, a new crowd video anomaly detection algorithm has been developed based on analysing the extracted spatio-temporal textures. The algorithm has been designed for real-time applications by deploying low-level statistical features and alleviating complicated machine learning and recognition processes. In the experiments, the system has been proven a valid solution for detecting anomaly behaviours without strong assumptions on the nature of crowds, for example, subjects and density. The developed prototype shows improved adaptability and efficiency against chosen benchmark systems.