دانلود مقاله ISI انگلیسی شماره 76917
ترجمه فارسی عنوان مقاله

اکتشاف و ارزیابی AR، MPCA و تکنیک های تشخیص ناهنجاری KL به داده فشار سنج سد خاکریزی

عنوان انگلیسی
Exploration and evaluation of AR, MPCA and KL anomaly detection techniques to embankment dam piezometer data
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
76917 2015 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Advanced Engineering Informatics, Volume 29, Issue 4, October 2015, Pages 902–917

ترجمه کلمات کلیدی
نظارت بر سلامت ساختاری؛ ایمنی سد؛ تشخیص ناهنجاری؛ روش های آماری
کلمات کلیدی انگلیسی
Structural health monitoring; Dam safety; Anomaly detection; Statistical techniques

چکیده انگلیسی

In the U.S., the current practice of analyzing the structural integrity of embankment dams relies primarily on manual a posteriori analysis of instrument data by engineers, leaving much room for improvement through the application of advanced data analysis techniques. In this research, different types of anomaly detection techniques are examined in an effort to propose which data analytics are appropriate for various anomaly scenarios as well as piezometer locations. Moreover, both the parametric (Auto Regressive [AR] and Moving Principal Component Analysis [MPCA]) and nonparametric (Kullback–Leibler Divergence [KL]) techniques are applied in order to test if the widely-held assumptions about piezometer data, i.e., linearity between piezometer data and pool levels, as well as normally distributed piezometer data, are necessary in the anomaly detection task. In general, KL performs better than MPCA and AR, and delivers more consistent results throughout the different piezometers and anomaly scenarios. Given that KL is a nonparametric technique, the authors conclude that the prior assumptions about piezometer data do not always provide the best performance for anomaly prediction.