دانلود مقاله ISI انگلیسی شماره 76925
ترجمه فارسی عنوان مقاله

سیستم های تشخیص ناهنجاری زمان واقعی برای حملات خودداری از خدمات توسط طبقه بندی K-نزدیکترین همسایه سنگین

عنوان انگلیسی
Real-time anomaly detection systems for Denial-of-Service attacks by weighted k-nearest-neighbor classifiers
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
76925 2011 7 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 38, Issue 4, April 2011, Pages 3492–3498

ترجمه کلمات کلیدی
(K نزدیکترین همسایه) طبقه بندی KNN؛ الگوریتم ژنتیک؛ NIDS (شبکه سیستم تشخیص نفوذ) - امنیت شبکه؛ حملات DoS - انتخاب ویژگی؛ توزین ویژگی
کلمات کلیدی انگلیسی
KNN (k-nearest-neighbor) classification; Genetic algorithm; NIDS (network intrusion detection system); Network security; DoS attacks; Feature selection; Feature weighting
پیش نمایش مقاله
پیش نمایش مقاله  سیستم های تشخیص ناهنجاری زمان واقعی برای حملات خودداری از خدمات توسط طبقه بندی K-نزدیکترین همسایه سنگین

چکیده انگلیسی

This study proposed a method which can detect large-scale attacks, such as DoS attacks, in real-time by weighted KNN classifiers. The key factor for designing an anomaly-based NIDS is to select significant features for making decisions. Not only is excellent detection performance required, but real-time processing is also demanded for most NIDSs. A good feature selection policy, which can choose significant and as few as possible features, plays a key role for any successful NIDS. The study proposed a genetic algorithm combined with KNN (k-nearest-neighbor) for feature selection and weighting. All initial 35 features in the training phase were weighted, and the top ones were selected to implement NIDSs for testing. Many DoS attacks were applied to evaluate the systems. For known attacks, an overall accuracy rate as high as 97.42% was obtained, while only the top 19 features were considered. For unknown attacks, an overall accuracy rate of 78% was obtained using the top 28 features.