دانلود مقاله ISI انگلیسی شماره 76939
ترجمه فارسی عنوان مقاله

یک الگوریتم انتخاب منفی با یادگیری انطباقی آنلاین تحت نمونه های کوچک برای تشخیص ناهنجاری

عنوان انگلیسی
A negative selection algorithm with online adaptive learning under small samples for anomaly detection
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
76939 2015 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neurocomputing, Volume 149, Part B, 3 February 2015, Pages 515–525

ترجمه کلمات کلیدی
سیستم ایمنی مصنوعی؛ الگوریتم انتخاب منفی؛ تشخیص ناهنجاری؛ آشکارساز رابط - یادگیری انطباقی آنلاین
کلمات کلیدی انگلیسی
Artificial immune system; Negative selection algorithm; Anomaly detection; Interface detector; Online adaptive learning

چکیده انگلیسی

The training stage and testing stage of traditional negative selection algorithm (NSA) are mutually independent, and NSA lacks continuous learning ability. Its detector cannot completely cover the non-self space. A new NSA with online adaptive learning under small training samples, OALI-detector, was proposed in this paper. I-detector can fully separate the self space from the non-self space with an appropriate self radius. It can adapt itself to real-time change of self space during the testing stage. The experimental comparison among I-detector, V-detector, and other anomaly detection algorithms in two artificial and Iris datasets shows that the I-detector can obtain the highest detection rate in most cases. The experimental comparison between OALI-detector and V-detector on Iris datasets shows that when overfitting does not occur, the OALI-detector can obtain the highest and lowest false alarm rates, even if only one self sample is used for training.