دانلود مقاله ISI انگلیسی شماره 76940
ترجمه فارسی عنوان مقاله

تشخیص ناهنجاری در جریان داده های حسگر محیطی: کاربرد مدلسازی داده محور

عنوان انگلیسی
Anomaly detection in streaming environmental sensor data: A data-driven modeling approach
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
76940 2010 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Environmental Modelling & Software, Volume 25, Issue 9, September 2010, Pages 1014–1022

ترجمه کلمات کلیدی
محیط ساحلی؛ مدل سازی داده محور؛ تشخیص ناهنجاری؛ فراگیری ماشین؛ اطلاعات در زمان واقعی؛ شبکه های حسگر؛ کنترل کیفیت داده ها؛ هوش مصنوعی
کلمات کلیدی انگلیسی
Coastal environment; Data-driven modeling; Anomaly detection; Machine learning; Real-time data; Sensor networks; Data quality control; Artificial intelligence
پیش نمایش مقاله
پیش نمایش مقاله  تشخیص ناهنجاری در جریان داده های حسگر محیطی: کاربرد مدلسازی داده محور

چکیده انگلیسی

The deployment of environmental sensors has generated an interest in real-time applications of the data they collect. This research develops a real-time anomaly detection method for environmental data streams that can be used to identify data that deviate from historical patterns. The method is based on an autoregressive data-driven model of the data stream and its corresponding prediction interval. It performs fast, incremental evaluation of data as it becomes available, scales to large quantities of data, and requires no pre-classification of anomalies. Furthermore, this method can be easily deployed on a large heterogeneous sensor network. Sixteen instantiations of this method are compared based on their ability to identify measurement errors in a windspeed data stream from Corpus Christi, Texas. The results indicate that a multilayer perceptron model of the data stream, coupled with replacement of anomalous data points, performs well at identifying erroneous data in this data stream.