دانلود مقاله ISI انگلیسی شماره 76951
ترجمه فارسی عنوان مقاله

تشخیص ناهنجاری آنلاین با استفاده از تکنیک های کاهش ابعاد برای تجزیه و تحلیل HTTP log

عنوان انگلیسی
Online anomaly detection using dimensionality reduction techniques for HTTP log analysis
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
76951 2015 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computer Networks, Volume 91, 14 November 2015, Pages 46–56

ترجمه کلمات کلیدی
امنیت سایبری؛ تشخیص ناهنجاری؛ تشخیص نفوذ - تجزیه و تحلیل مولفه های اصلی؛ طرح ریزی تصادفی - نقشه انتشار
کلمات کلیدی انگلیسی
Cyber security; Anomaly detection; Intrusion detection; Principal component analysis; Random projection; Diffusion map

چکیده انگلیسی

Modern web services face an increasing number of new threats. Logs are collected from almost all web servers, and for this reason analyzing them is beneficial when trying to prevent intrusions. Intrusive behavior often differs from the normal web traffic. This paper proposes a framework to find abnormal behavior from these logs. We compare random projection, principal component analysis and diffusion map for anomaly detection. In addition, the framework has online capabilities. The first two methods have intuitive extensions while diffusion map uses the Nyström extension. This fast out-of-sample extension enables real-time analysis of web server traffic. The framework is demonstrated using real-world network log data. Actual abnormalities are found from the dataset and the capabilities of the system are evaluated and discussed. These results are useful when designing next generation intrusion detection systems. The presented approach finds intrusions from high-dimensional datasets in real time.