دانلود مقاله ISI انگلیسی شماره 76955
ترجمه فارسی عنوان مقاله

تشخیص ناهنجاری حجم کار آگاه برای برنامه های کاربردی وب ☆

عنوان انگلیسی
Workload-aware anomaly detection for Web applications ☆
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
76955 2014 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Systems and Software, Volume 89, March 2014, Pages 19–32

ترجمه کلمات کلیدی
تشخیص ناهنجاری؛ برنامه های کاربردی وب - عامل پرت محلی
کلمات کلیدی انگلیسی
Anomaly detection; Web applications; Local outlier factor

چکیده انگلیسی

The failure of Web applications often affects a large population of customers, and leads to severe economic loss. Anomaly detection is essential for improving the reliability of Web applications. Current approaches model correlations among metrics, and detect anomalies when the correlations are broken. However, dynamic workloads cause the metric correlations to change over time. Moreover, modeling various metric correlations are difficult in complex Web applications. This paper addresses these problems and proposes an online anomaly detection approach for Web applications. We present an incremental clustering algorithm for training workload patterns online, and employ the local outlier factor (LOF) in the recognized workload pattern to detect anomalies. In addition, we locate the anomalous metrics with the Student's t-test method. We evaluated our approach on a testbed running the TPC-W industry-standard benchmark. The experimental results show that our approach is able to (1) capture workload fluctuations accurately, (2) detect typical faults effectively and (3) has advantages over two contemporary ones in accuracy.