دانلود مقاله ISI انگلیسی شماره 76961
ترجمه فارسی عنوان مقاله

استخراج جزء سیگنال نادر بر اساس روش کرنل برای تشخیص ناهنجاری در تصورات ابر طیفی

عنوان انگلیسی
Rare signal component extraction based on kernel methods for anomaly detection in hyperspectral imagery
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
76961 2013 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neurocomputing, Volume 108, 2 May 2013, Pages 103–110

ترجمه کلمات کلیدی
تصورات ابر طیفی؛ تشخیص ناهنجاری؛ تجزیه و تحلیل مولفه های مستقل؛ روش های کرنل (KM)؛ آمار بالا سفارش؛ تجزیه مقدار منفرد (SVD)
کلمات کلیدی انگلیسی
Hyperspectral imagery; Anomaly detection; Independent component analysis; Kernel methods (KM); High-order statistics; Singular value decomposition (SVD)
پیش نمایش مقاله
پیش نمایش مقاله  استخراج جزء سیگنال نادر بر اساس روش کرنل برای تشخیص ناهنجاری در تصورات ابر طیفی

چکیده انگلیسی

Anomaly detection is one of hot research topics in hyperspectral remote sensing. For this task, RX detector (RXD) is a benchmark method. Unfortunately, Gaussian distribution assumption adopted by RXD cannot be well satisfied in hyperspectral images due to high dimensionality of data and complicated correlation between spectral bands. In this paper, we address this problem and propose an algorithm called rare signal component extraction (RSCE), aiming at finding a subspace where the Gaussian assumption is well obeyed and improving detection performance of RXD. RSCE algorithm first utilizes kernel singular value decomposition (KSVD) to construct a kernel-based whitening operator, and then, carries out kernel-based whitening on hyperspectral data. After that, RSCE algorithm is to extract and determine a singular signal subspace by means of independent component analysis in reproducing kernel Hilbert space (RKHS) space and singularity measure. Numerical experiments were conducted on two real hyperspectral datasets. The experimental results show that the proposed RSCE algorithm greatly improves the detection performance of RXD and outperforms other state-of-the-art methods.