دانلود مقاله ISI انگلیسی شماره 76963
ترجمه فارسی عنوان مقاله

TRASMIL: چارچوب تشخیص ناهنجاری محلی مبتنی بر تقسیم بندی مسیر و یادگیری چند مثال

عنوان انگلیسی
TRASMIL: A local anomaly detection framework based on trajectory segmentation and multi-instance learning
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
76963 2013 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computer Vision and Image Understanding, Volume 117, Issue 10, October 2013, Pages 1273–1286

ترجمه کلمات کلیدی
تشخیص ناهنجاری محلی؛ تقسیم بندی مسیر؛ نمایندگی مسیر؛ یادگیری چند مثال؛ HDP-HMM
کلمات کلیدی انگلیسی
Local anomaly detection; Trajectory segmentation; Trajectory representation; Multi-instance learning; HDP-HMM
پیش نمایش مقاله
پیش نمایش مقاله  TRASMIL: چارچوب تشخیص ناهنجاری محلی مبتنی بر تقسیم بندی مسیر و یادگیری چند مثال

چکیده انگلیسی

Local anomaly detection refers to detecting small anomalies or outliers that exist in some subsegments of events or behaviors. Such local anomalies are easily overlooked by most of the existing approaches since they are designed for detecting global or large anomalies. In this paper, an accurate and flexible three-phase framework TRASMIL is proposed for local anomaly detection based on TRAjectory Segmentation and Multi-Instance Learning. Firstly, every motion trajectory is segmented into independent sub-trajectories, and a metric with Diversity and Granularity is proposed to measure the quality of segmentation. Secondly, the segmented sub-trajectories are modeled by a sequence learning model. Finally, multi-instance learning is applied to detect abnormal trajectories and sub-trajectories which are viewed as bags and instances, respectively. We validate the TRASMIL framework in terms of 16 different algorithms built on the three-phase framework. Substantial experiments show that algorithms based on the TRASMIL framework outperform existing methods in effectively detecting the trajectories with local anomalies in terms of the whole trajectory. In particular, the MDL-C algorithm (the combination of HDP-HMM with MDL segmentation and Citation kNN) achieves the highest accuracy and recall rates. We further show that TRASMIL is generic enough to adopt other algorithms for identifying local anomalies.