دانلود مقاله ISI انگلیسی شماره 76967
ترجمه فارسی عنوان مقاله

الگوریتم انتخاب منفی ترکیبی مبتنی بر بی نظمی و کاربردهای آن در خطا و تشخیص ناهنجاری

عنوان انگلیسی
Chaotic-based hybrid negative selection algorithm and its applications in fault and anomaly detection
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
76967 2010 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 37, Issue 7, July 2010, Pages 5285–5294

ترجمه کلمات کلیدی
سیستم ایمنی مصنوعی؛ انتخاب منفی؛ K-نزدیکترین همسایه؛ ناهنجاری و عیب یابی
کلمات کلیدی انگلیسی
Artificial immune system; Negative selection; K-nearest neighbor; Anomaly and fault detection
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم انتخاب منفی ترکیبی مبتنی بر بی نظمی و کاربردهای آن در خطا و تشخیص ناهنجاری

چکیده انگلیسی

This paper proposes a new negative selection algorithm method that uses chaotic maps for parameter selection. This has been done by using of chaotic number generators each time a random number is needed by the original negative selection for mutation and generation of initial population. The coverage of negative selection algorithm has been improved by using chaotic maps. The proposed algorithm utilizes from clonal selection to obtain optimal non-overlapping detectors. In many anomaly or fault detection systems, training data don’t represent all normal data and self/non-self space often varies over the time. In the testing stage, when any test data cannot be detected by any self or non-self detector, the nearest detectors are found by K-Nearest Neighbor (K-NN) method and the nearest detector is mutated as a new detector to detect this new sample. Proposed chaotic-based hybrid negative selection algorithm (CHNSA) has been analyzed in the broken rotor bar fault detection and Fisher Iris datasets.