دانلود مقاله ISI انگلیسی شماره 76973
ترجمه فارسی عنوان مقاله

خوشه بندی بیضی برای تشخیص ناهنجاری

عنوان انگلیسی
Clustering ellipses for anomaly detection
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
76973 2011 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Pattern Recognition, Volume 44, Issue 1, January 2011, Pages 55–69

ترجمه کلمات کلیدی
آنالیز خوشه ای؛ ناهنجاری ترین نقطه ی بیضوی در شبکه های حسگر بی سیم؛ تصاویر عدم تشابه دوباره مرتب - شباهت بیضی؛ خوشه بندی ارتباط تنها؛ ارزیابی بصری
کلمات کلیدی انگلیسی
Cluster analysis; Elliptical anomalies in wireless sensor networks; Reordered dissimilarity images; Similarity of ellipsoids; Single linkage clustering; Visual assessment

چکیده انگلیسی

Comparing, clustering and merging ellipsoids are problems that arise in various applications, e.g., anomaly detection in wireless sensor networks and motif-based patterned fabrics. We develop a theory underlying three measures of similarity that can be used to find groups of similar ellipsoids in p-space. Clusters of ellipsoids are suggested by dark blocks along the diagonal of a reordered dissimilarity image (RDI). The RDI is built with the recursive iVAT algorithm using any of the three (dis) similarity measures as input and performs two functions: (i) it is used to visually assess and estimate the number of possible clusters in the data; and (ii) it offers a means for comparing the three similarity measures. Finally, we apply the single linkage and CLODD clustering algorithms to three two-dimensional data sets using each of the three dissimilarity matrices as input. Two data sets are synthetic, and the third is a set of real WSN data that has one known second order node anomaly. We conclude that focal distance is the best measure of elliptical similarity, iVAT images are a reliable basis for estimating cluster structures in sets of ellipsoids, and single linkage can successfully extract the indicated clusters.