دانلود مقاله ISI انگلیسی شماره 76974
ترجمه فارسی عنوان مقاله

تشخیص ناهنجاری برای تجزیه و تحلیل تصویری از داده های مصرف برق

عنوان انگلیسی
Anomaly detection for visual analytics of power consumption data
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
76974 2014 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Graphics, Volume 38, February 2014, Pages 27–37

ترجمه کلمات کلیدی
اهمیت محور؛ تجسم مبتنی بر پیکسل؛ تشخیص ناهنجاری؛ علم تجزیه و تحلیل ویژوال
کلمات کلیدی انگلیسی
Importance-driven; Pixel-based visualization; Anomaly detection; Visual analytics

چکیده انگلیسی

Commercial buildings are significant consumers of electrical power. Also, energy expenses are an increasing cost factor. Many companies therefore want to save money and reduce their power usage. Building administrators have to first understand the power consumption behavior, before they can devise strategies to save energy. Second, sudden unexpected changes in power consumption may hint at device failures of critical technical infrastructure. The goal of our research is to enable the analyst to understand the power consumption behavior and to be aware of unexpected power consumption values. In this paper, we introduce a novel unsupervised anomaly detection algorithm and visualize the resulting anomaly scores to guide the analyst to important time points. Different possibilities for visualizing the power usage time series are presented, combined with a discussion of the design choices to encode the anomaly values. Our methods are applied to real-world time series of power consumption, logged in a hierarchical sensor network.