دانلود مقاله ISI انگلیسی شماره 78726
ترجمه فارسی عنوان مقاله

خصوصیات عددی مبتنی بر نظریه شواهد از مجموعه های rough چند دانه ریز در سیستم های اطلاعات ناقص

عنوان انگلیسی
Evidence-theory-based numerical characterization of multigranulation rough sets in incomplete information systems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
78726 2016 18 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Fuzzy Sets and Systems, Volume 294, 1 July 2016, Pages 18–35

ترجمه کلمات کلیدی
نسبت کاهش؛ تابع اعتقاد، نظریه شواهد؛ سیستم اطلاعات ناقص؛ مجموعه rough چند گرانوله؛ عملکرد معقول
کلمات کلیدی انگلیسی
Attribute reduction; Belief function; Evidence theory; Incomplete information system; Multigranulation rough set; Plausibility function
پیش نمایش مقاله
پیش نمایش مقاله  خصوصیات عددی مبتنی بر  نظریه شواهد از مجموعه های rough چند دانه ریز در سیستم های اطلاعات ناقص

چکیده انگلیسی

Multigranulation rough sets are desirable features in the field of rough set, where this concept is approximated by multiple granular structures. In this study, we employ belief and plausibility functions from evidence theory to characterize the set approximations and attribute reductions in multigranulation rough set theory. First, we show that in an incomplete information system, the pessimistic multigranulation approximations can be measured by belief and plausibility functions, whereas the optimistic multigranulation approximations do not possess this characteristic in general. We also give a sufficient and necessary condition for the numerical measurement of optimistic multigranulation approximations by belief and plausibility functions. Second, in an incomplete decision system, the pessimistic multigranulation approximations are also measured by belief and plausibility functions. In the end, an attribute reduction algorithm for multigranulation rough sets is proposed based on evidence theory, and its efficiency is examined by an example. Thus, belief and plausibility functions can be employed to numerically characterize the attribute reductions and to construct an attribute reduction algorithm for multigranulation rough sets.