دانلود مقاله ISI انگلیسی شماره 79001
ترجمه فارسی عنوان مقاله

ارتقاء الگوریتم خوشه بندی c-means فازی رابطه

عنوان انگلیسی
Improvements to the relational fuzzy c-means clustering algorithm
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79001 2014 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Pattern Recognition, Volume 47, Issue 12, December 2014, Pages 3920–3930

ترجمه کلمات کلیدی
خوشه بندی فازی؛ c-means رابطه؛ ماتریس فاصله اقلیدسی
کلمات کلیدی انگلیسی
Fuzzy clustering; Relational c-means; Euclidean distance matrices
پیش نمایش مقاله
پیش نمایش مقاله  ارتقاء الگوریتم خوشه بندی c-means فازی رابطه

چکیده انگلیسی

Relational fuzzy c-means (RFCM) is an algorithm for clustering objects represented in a pairwise dissimilarity values in a dissimilarity data matrix D. RFCM is dual to the fuzzy c-means (FCM) object data algorithm when D is a Euclidean matrix. When D is not Euclidean, RFCM can fail to execute if it encounters negative relational distances. To overcome this problem we can Euclideanize the relation D prior to clustering. There are different ways to Euclideanize D such as the β-spread transformation. In this article we compare five methods for Euclideanizing D   to D˜. The quality of D˜ for our purpose is judged by the ability of RFCM to discover the apparent cluster structure of the objects underlying the data matrix D  . The subdominant ultrametric transformation is a clear winner, producing much better partitions of D˜ than the other four methods. This leads to a new algorithm which we call the improved RFCM (iRFCM).