دانلود مقاله ISI انگلیسی شماره 79037
ترجمه فارسی عنوان مقاله

الگوریتم های خوشه بندی رقابتی بر اساس خواص ultrametric

عنوان انگلیسی
Competitive clustering algorithms based on ultrametric properties
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79037 2013 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Computational Science, Volume 4, Issue 4, July 2013, Pages 219–231

ترجمه کلمات کلیدی
خوشه بندی؛ Ultrametric؛ پیچیدگی؛ آنالیز استهلاکی؛ تجزیه و تحلیل میانگین - فضای مرتب
کلمات کلیدی انگلیسی
Clustering; Ultrametric; Complexity; Amortized analysis; Average analysis; Ordered space
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم های خوشه بندی رقابتی بر اساس خواص ultrametric

We propose in this paper two new competitive unsupervised clustering algorithms: the first algorithm deals with ultrametric data, it has a computational cost of O(n). The second algorithm has two strong features: it is fast and flexible on the processed data type as well as in terms of precision. The second algorithm has a computational cost, in the worst case, of O(n2), and in the average case, of O(n). These complexities are due to exploitation of ultrametric distance properties. In the first method, we use the order induced by an ultrametric in a given space to demonstrate how we can explore quickly data proximity. In the second method, we create an ultrametric space from a sample data, chosen uniformly at random, in order to obtain a global view of proximities in the data set according to the similarity criterion. Then, we use this proximity profile to cluster the global set. We present an example of our algorithms and compare their results with those of a classic clustering method.