دانلود مقاله ISI انگلیسی شماره 79543
ترجمه فارسی عنوان مقاله

یک روش برنامه نویسی پویا تقریبی برای بهبود دقت و صحت فشرده سازی داده ها با اتلاف توسط فیلترهای بلوم

عنوان انگلیسی
An approximate dynamic programming approach for improving accuracy of lossy data compression by Bloom filters
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79543 2016 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : European Journal of Operational Research, Volume 252, Issue 3, 1 August 2016, Pages 985–994

ترجمه کلمات کلیدی
فشرده سازی با اتلاف؛ فیلتر بلوم؛ برنامه خطی عدد صحیح؛ برنامه نویسی پویا تقریبی؛ Heuristics
کلمات کلیدی انگلیسی
Lossy compression; Bloom filter; Integer linear program; Approximate dynamic programming; Heuristics
پیش نمایش مقاله
پیش نمایش مقاله  یک روش برنامه نویسی پویا تقریبی برای بهبود دقت و صحت فشرده سازی داده ها با اتلاف توسط فیلترهای بلوم

چکیده انگلیسی

Bloom filters are a data structure for storing data in a compressed form. They offer excellent space and time efficiency at the cost of some loss of accuracy (so-called lossy compression). This work presents a yes–no Bloom filter, which as a data structure consisting of two parts: the yes-filter which is a standard Bloom filter and the no-filter which is another Bloom filter whose purpose is to represent those objects that were recognized incorrectly by the yes-filter (that is, to recognize the false positives of the yes-filter). By querying the no-filter after an object has been recognized by the yes-filter, we get a chance of rejecting it, which improves the accuracy of data recognition in comparison with the standard Bloom filter of the same total length. A further increase in accuracy is possible if one chooses objects to include in the no-filter so that the no-filter recognizes as many as possible false positives but no true positives, thus producing the most accurate yes–no Bloom filter among all yes–no Bloom filters. This paper studies how optimization techniques can be used to maximize the number of false positives recognized by the no-filter, with the constraint being that it should recognize no true positives. To achieve this aim, an Integer Linear Program (ILP) is proposed for the optimal selection of false positives. In practice the problem size is normally large leading to intractable optimal solution. Considering the similarity of the ILP with the Multidimensional Knapsack Problem, an Approximate Dynamic Programming (ADP) model is developed making use of a reduced ILP for the value function approximation. Numerical results show the ADP model works best comparing with a number of heuristics as well as the CPLEX built-in solver (B&B), and this is what can be recommended for use in yes–no Bloom filters. In a wider context of the study of lossy compression algorithms, our research is an example showing how the arsenal of optimization methods can be applied to improving the accuracy of compressed data.