دانلود مقاله ISI انگلیسی شماره 79749
ترجمه فارسی عنوان مقاله

برنامه ریزی برنامه های زمانبندی پروژه با محدودیت زمانی تصادفی با برنامه ریزی پویای تقریبا حلقه بسته

عنوان انگلیسی
Solving stochastic resource-constrained project scheduling problems by closed-loop approximate dynamic programming
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79749 2015 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : European Journal of Operational Research, Volume 246, Issue 1, 1 October 2015, Pages 20–33

ترجمه کلمات کلیدی
برنامه ریزی پروژه با محدودیت منابع، طول وظیفه نامعلوم، برنامه ریزی تصادفی، برنامه ریزی پویا تقریبی شبیه سازی
کلمات کلیدی انگلیسی
Resource-constrained project scheduling; Uncertain task durations; Stochastic scheduling; Approximate dynamic programming; Simulation

چکیده انگلیسی

Project scheduling problems with both resource constraints and uncertain task durations have applications in a variety of industries. While the existing research literature has been focusing on finding an a priori open-loop task sequence that minimizes the expected makespan, finding a dynamic and adaptive closed-loop policy has been regarded as being computationally intractable. In this research, we develop effective and efficient approximate dynamic programming (ADP) algorithms based on the rollout policy for this category of stochastic scheduling problems. To enhance performance of the rollout algorithm, we employ constraint programming (CP) to improve the performance of base policy offered by a priority-rule heuristic. We further devise a hybrid ADP framework that integrates both the look-back and look-ahead approximation architectures, to simultaneously achieve both the quality of a rollout (look-ahead) policy to sequentially improve a task sequence, and the efficiency of a lookup table (look-back) approach. Computational results on the benchmark instances show that our hybrid ADP algorithm is able to obtain competitive solutions with the state-of-the-art algorithms in reasonable computational time. It performs particularly well for instances with non-symmetric probability distribution of task durations.