دانلود مقاله ISI انگلیسی شماره 79766
ترجمه فارسی عنوان مقاله

الگوریتم نزولی مبتنی بر شبکه عصبی برای سیستم های غیر خطی زمان گسسته از طریق الگوریتم برنامه ریزی پویا تکراری تطبیقی ​​پویا

عنوان انگلیسی
Neural-network-based zero-sum game for discrete-time nonlinear systems via iterative adaptive dynamic programming algorithm ☆
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79766 2013 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neurocomputing, Volume 110, 13 June 2013, Pages 92–100

چکیده انگلیسی

In this paper, we solve the zero-sum game problems for discrete-time affine nonlinear systems with known dynamics via iterative adaptive dynamic programming algorithm. First, a greedy heuristic dynamic programming iteration algorithm is developed to solve the zero-sum game problems, which can be used to solve the Hamilton–Jacobi–Isaacs equation associated with H∞H∞ optimal regulation control problems. The convergence analysis in terms of value function and control policy is provided. To facilitate the implementation of the algorithm, three neural networks are used to approximate the control policy, the disturbance policy, and the value function, respectively. Then, we extend the algorithm to H∞H∞ optimal tracking control problems through system transformation. Finally, two simulation examples are presented to demonstrate the effectiveness of the proposed scheme.