دانلود مقاله ISI انگلیسی شماره 79769
ترجمه فارسی عنوان مقاله

تقریب تابع مقدار شبکه عصبی و رگرسیون برای برنامه ریزی دینامیکی تصادفی

عنوان انگلیسی
Neural network and regression spline value function approximations for stochastic dynamic programming
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79769 2007 21 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Operations Research, Volume 34, Issue 1, January 2007, Pages 70–90

چکیده انگلیسی

Dynamic programming is a multi-stage optimization method that is applicable to many problems in engineering. A statistical perspective of value function approximation in high-dimensional, continuous-state stochastic dynamic programming (SDP) was first presented using orthogonal array (OA) experimental designs and multivariate adaptive regression splines (MARS). Given the popularity of artificial neural networks (ANNs) for high-dimensional modeling in engineering, this paper presents an implementation of ANNs as an alternative to MARS. Comparisons consider the differences in methodological objectives, computational complexity, model accuracy, and numerical SDP solutions. Two applications are presented: a nine-dimensional inventory forecasting problem and an eight-dimensional water reservoir problem. Both OAs and OA-based Latin hypercube experimental designs are explored, and OA space-filling quality is considered.