دانلود مقاله ISI انگلیسی شماره 79777
ترجمه فارسی عنوان مقاله

الگوریتم های تقریبی دینامیکی پویا برای پروسه های تصمیم گیری مارکوف در مقیاس وسیع بدون تقارن و کاربرد آنها برای بهینه سازی سیستم تولید و توزیع

عنوان انگلیسی
New approximate dynamic programming algorithms for large-scale undiscounted Markov decision processes and their application to optimize a production and distribution system
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79777 2016 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : European Journal of Operational Research, Volume 249, Issue 1, 16 February 2016, Pages 22–31

چکیده انگلیسی

For numerical comparisons, the optimal control problem of the three-stage JIT-based production and distribution system with stochastic demand and production capacity is formulated as a UMDP. The demand distribution is changed from a shifted binomial distribution in Ohno (2011) to a Poisson distribution and near-optimal policies of the optimal control problems with 35,973,840 states are computed by the SBMPI algorithms and the SBMPIM. The computational result shows that the SBMPI algorithms are at least 100 times faster than the SBMPIM in solving the numerical problems and are robust with respect to initial policies. Numerical examples are solved to show an effectiveness of the near optimal control utilizing the SBMPI algorithms compared with optimized pull systems with optimal parameters computed utilizing the SBOS (simulation-based optimal solutions) from Ohno (2011).